
Orion SQL API Help Index
This index lists the help topics available for the Orion SQL applications programming interface (API).   
Using the keyboard, tab to select the underlined topic you want to view, then press enter.    Using the
mouse, point to the underlined topic you want to view, and click the left mouse button.    Use the scroll bar
to see entries not currently visible in the help window.
To learn how to use help, press F1.

Overview This section describes, in general terms, what the Orion SQL API is and how you
might use it to execute SQL statements within your program.    Examples are
available both in 'C' (EXAMPLEC.*) and 'Visual Basic' (EXAMPLEB.*).

Functions This section includes a formal description of all functions which your program can
import from the Orion SQL API dynamic link library (SQL.LIB, SQL.DLL).   
Prototypes for all functions can be found in the Orion SQL API include file for 'C'
(SQL.H) and the global file for 'Visual Basic' (SQL.GBL).

Constants This section includes a formal description of all constants defined in the Orion
SQL API include file for 'C' and the global file for 'Visual Basic'.

Data Structures This section includes a formal description of all data structures which your
program will use when it communicates with the Orion SQL API.    Typedefs for all
these structures can be found in the Orion SQL API include file for 'C'.   
Declarations can be found in the global file for 'Visual Basic'.

Result Codes This section gives an explanation of all result codes returned by the Orion SQL
API.    Macro definitions for all result codes can be found in the Orion SQL API
include file for 'C'.    Global Const definitions can be found in the global file for
'Visual Basic'.

Overview
What is the Orion SQL API?

The Orion SQL API is a powerful tool that enables you, the software developer, to have
full access to a modern, highly optimized ANSI standard SQL database manager: the
Orion Database Administrator.    Your programs written in any language which can access
dynamic link libraries can also access the Orion SQL API.    These languages include 'C',
'C++', 'Visual Basic', 'Pascal' and most assemblers.    In fact, any program which can
access the Microsoft Windows environment can access the Orion SQL API.    Microsoft
Windows itself is a dynamic link library.
The Orion SQL API is your gateway to modern database technology.    With a little more
than a dozen functions and only 4 data structures you can perform almost any database
task.

How does the Orion SQL API work?
"How is this done?"    you might ask.    Well, while the Orion Database Administrator is
sophisticated, complex and fully optimized for maximum performance: the Orion SQL API
is simple and straight forward.    The Orion SQL API effectively buffers you from all the
complex tasks of parsing, query analysis, query optimization, query tree construction, etc.

How do I link to the Orion SQL API?
When programming in 'C', you need to do only three things to include all the power of
SQL in your application:
1) When you link your object modules, include the SQL.LIB import library along with

LIBW.LIB.
2) Include the SQL.H file (e.g. "#include <SQL.H>") in your source code.
3) Put the Orion Database Administrator (DBA.EXE) and Orion SQL API (SQL.DLL)

someplace where windows can find them (usually in your windows directory).
When programming in 'Visual Basic', you need to do only two things to include all the
power of SQL in your application:
1) Be sure to use the SQL.GBL file included with the Orion SQL API.    Note that the

'C' style prefixes used with variable names (i.e. the 'n' in nResultCode, and the
'sz' in szErrorMessage) are not used with 'Visual Basic'.

2) Put the Orion Database Administrator (DBA.EXE) and Orion SQL API (SQL.DLL)
someplace where windows can find them (usually in your windows directory).

How do I use the Orion SQL API?
Your program can login to the Orion Database Administrator (SqlLogin), open a cursor
(SqlCursorOpen) and execute a query (SqlExecute).    The query itself is passed to the
Orion SQL API as a simple text string.    The Orion SQL API does all the work for you.    To
get your answers back (from a SELECT statement, for example) you simply fetch them
one at a time from the Orion SQL API.    You can fetch the first record (SqlFetchFirst), last
record (SqlFetchLast), next record (SqlFetchNext), previous record (SqlFetchPrevious) or
even a record at a position you specify    (SqlFetchPositioned).
You can have several cursors open at a time so that you can access your data the way
you want.
When you're all done, close your cursors (SqlCursorClose) and log out (SqlLogout).

How can I check out my SQL statements?
You can check out your SQL statements using the Orion Query Editor (QE.EXE) included
with the Orion SQL API.    The Orion Query Editor allows you to type in the query your
program is going to send to the Orion SQL API and have it execute right there in front of
you.    You'll get all the results back on the screen where you can verify it's what you
expected.    In fact, the Orion Query Editor uses the Orion SQL API the same way your
program does.

Functions
All Orion SQL API functions utilize a common structure to maintain generic information :
SQLCONTROL.    All functions load descriptive error information into this structure should
an error condition arise.    The basic status condition is the nResultCode field of this data
structure.    All Orion SQL API functions set this field to the appropriate result code in the
event of an error.    Note: All Orion SQL API functions clear this field to 0 at entry.

SqlCursorClose Closes a cursor when it is no longer needed
SqlCursorOpen Opens a cursor in preparation for executing a query
SqlDescribeColumn Describes an individual column in the result table
SqlDescribeTable Describes the overall characteristics of the result table
SqlExecute Causes the database administrator to execute a query and potentially create a

result table
SqlFetchFirst Retrieves the first record from the result table
SqlFetchLast Retrieves the last record from the result table
SqlFetchNext Retrieves the next record from the table
SqlFetchPrevious Retrieves the previous record from the result table
SqlFetchPositioned Retrieves a particular record from the result table.    The record is identified by its

absolute physical position in the table
SqlGetStatus Gets status information concerning the last query executed
SqlLogin Logs an user onto the database administrator
SqlLogout Logs an user off the database administrator

Constants
This section includes a formal description of all constants defined in the Orion SQL API include file for 'C'
and the global file for 'Visual Basic'.
Be sure to use the values by name as the numeric values may (and probably will) change in the next
release of the Orion SQL API.

Data Class Identifies the general characteristics of a column in the result table
Data Type Identifies the particular characteristics of a column in the result table
Data Format Instructs the Orion SQL API as to the format of the returned data in the result

table
Automatic Commit Instructs the Orion SQL API whether to commit or roll back any pending

transaction at user log out
Name Length Defines the maximum length of user, table and column names

Data Structures
This section includes a formal description of all data structures which your program will use when it
communicates with the Orion SQL API.    Typedefs for all these structures can be found in the Orion SQL
API include file for 'C'.    Declarations can be found in the global file for 'Visual Basic'.

SQLCOLUMN The data structure which describes a column in the result table which was
generated by execution of a query

SQLCONTROL The data structure which contains information needed by the Orion SQL API to
perform its functions and which passes process information back to the user

SQLSTATUS The data structure with gives the user access to operational information
SQLTABLE The data structure which describes the result table which was generated by

execution of a query

Result Codes
This section gives an explanation of all result codes returned by the Orion SQL API.    Macro definitions for
all result codes can be found in the Orion SQL API include file for 'C'.    Global Const definitions can be
found in the global file for 'Visual Basic'.

Result Codes Part I Descriptions of result codes (Ambiguous Column - Data File Corrupted)

Result Codes Part II Descriptions of result codes (Database Corrupt - Invalid Cursor)

Result Codes Part III Descriptions of result codes (Invalid Data - NULL Not Allowed)

Result Codes Part IV Descriptions of result codes (Parser Syntax Error - Wrong Version)

Function: SqlCursorClose
Syntax BOOL FAR PASCAL SqlCursorClose(hUser    ,    hCursor    ,    lpSqlControl)

This function closes the cursor specified by the hCursor parameter and drops any result
table associated with it.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor to be closed.    The hCursor

parameter must have been created with the SqlCursorOpen
function.

lpSqlControl LPSQLCONTROL Points to an SQL control structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

Return Value The return value is 1 if no errors occurred while closing the cursor, otherwise it is 0.
Comments Cursors should be closed before logging off with SqlLogout.

Function: SqlCursorOpen
Syntax HANDLE FAR PASCAL SqlCursorOpen(hUser    ,    lpSqlControl)

This function creates a cursor.    You must create a cursor after you have logged in
(SqlLogin) and before you execute a query (SqlExecute).    You can create as many
cursors as you need for your application.

Parameter Type/Description
hUser HANDLE Identifies the user who will own the cursor.    The hUser

parameter must have been created with the SqlLogin function.
lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any

errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

Return Value The return value is a cursor handle if no errors occurred while opening the cursor,
otherwise it is 0.

Comments The cursors created by one user are not available to another.    Once a cursor has been
created and used in an SqlExecute, it may be reused in another SqlExecute by the
same user.    When a cursor is reused in this manner, the Orion SQL API effectively
closes the cursor and re-opens it with the same handle prior to executing the next query.   
Note that when a cursor is reused, any old result table associated with it is dropped.
Cursors are closed with SqlCursorClose.    Cursors should be closed before logging off
with SqlLogout.

Function: SqlDescribeColumn
Syntax BOOL FAR PASCAL SqlDescribeColumn(hUser    ,    hCursor    ,    lpSqlControl    ,   

nColumnSequenceNumber    ,    lpSqlColumn)
This function describes the characteristics of the specified column
(nColumnSequenceNumber) in the result table associated with the hCursor parameter.   
The description is loaded into the SQLCOLUMN structure pointed to by the lpSqlColumn
parameter.    To describe a column you must have already logged in (SqlLogin), created a
cursor (SqlCursorOpen) and executed a query (SqlExecute) which contained an SQL
SELECT statement.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor which owns the result table in

which the column exists.    The hCursor parameter must have
been created with the SqlCursorOpen function.    A result table
must be associated with the cursor.    A result table is created
when a query containing an SQL SELECT statement is passed
to SqlExecute.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

nColumnSequenceNumber unsigned Identifies the column to be described.   
Column numbers range from 1 to the number of columns in the
result table.

lpSqlColumn LPSQLCOLUMN Points to the target SQL Column Description
Structure.

Return Value The return value is 1 if no errors occurred, otherwise it is 0.
Comments If a result table is not associated with the cursor an error will be generated.

Function: SqlDescribeTable
Syntax BOOL FAR PASCAL SqlDescribeTable(hUser    ,    hCursor    ,    lpSqlControl    ,   

lpSqlTable)
This function describes the characteristics of the result table associated with the hCursor
parameter.    The description is loaded into the SQLTABLE structure pointed to by the
lpSqlTable parameter.    To describe a table you must have already logged in (SqlLogin),
created a cursor (SqlCursorOpen) and executed a query (SqlExecute) which contained
an SQL SELECT statement.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor which owns the result table.    The

hCursor parameter must have been created with the
SqlCursorOpen function.    A result table must be associated with
the cursor.    A result table is created when a query containing an
SQL SELECT statement is passed to SqlExecute.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

lpSqlTable LPSQLTABLE Points to the target SQL Table Description
Structure.

Return Value The return value is 1 if no errors occurred, otherwise it is 0.
Comments If a result table is not associated with the cursor an error will be generated.

Function: SqlExecute
Syntax BOOL FAR PASCAL SqlExecute(hUser    ,    hCursor    ,    lpSqlControl    ,   

lpstrQueryText)
This function executes the query text pointed to by the lpstrQueryText parameter as a set
of one or more SQL statements.    If an SQL SELECT statement is included in the query
text, a result table is created and associated with the hCursor parameter.    To execute a
query you must have already logged in (SqlLogin) and created a cursor (SqlCursorOpen).

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor which will own the result table if

one is created by the query.    The hCursor parameter must have
been created with the SqlCursorOpen function.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.    Additionally, syntax errors
detected by the query manager cause the nHiLiteOffset field to
be loaded with the character position of the offending phrase
within the query text.    In this case, the nHiLiteLength field is
loaded with the number of characters in the offending phrase.

lpstrQueryText LPSTR Points to a null terminated string containing the SQL
query.    The SQL query may contain one or more SQL
statements.    Among the SQL statements there can be only 0 or
1 SQL SELECT statement.

Return Value The return value is 1 if no errors occurred, otherwise it is 0.
Comments Simply calling SqlExecute does not commit your query.    Queries are committed when

you execute an SQL COMMIT WORK statement.    Be sure to execute this vital statement
whenever you want your program to permanently modify the database.
Each user must close all cursors which have an associated result table before executing
an SQL COMMIT WORK statement.    This is to insure that your application has
completed its access to the result table before permanently committing the transaction.   
A convenient way to do this is to use the same cursor for the COMMIT WORK as you did
for the SELECT: the Orion SQL API automatically drops any result table that may be
associated with a cursor when the cursor is reused.
Without the SQL COMMIT WORK statement, all your transactions will be rolled back
when either an error occurs or when you log off (SqlLogout).    The only exception to this
is if you have the mSqlFlagAutoCommitOnLogout option flag set in the wFlags field of
the lpSqlControl parameter when you log off. Only in this case are all your transactions
automatically committed at logout, and then only if no errors have occurred.

Function: SqlFetchFirst
Syntax BOOL FAR PASCAL SqlFetchFirst(hUser    ,    hCursor    ,    lpSqlControl    ,   

lpRecordBuffer)
This function reads the first record in the result table associated with the hCursor
parameter.    The data in this record is formatted and loaded into the buffer pointed to by
the lpRecordBuffer parameter.    To fetch this record you must have already logged in
(SqlLogin), created a cursor (SqlCursorOpen) and executed a query (SqlExecute) which
contained an SQL SELECT statement.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor which owns the result table in

which the record exists.    The hCursor parameter must have
been created with the SqlCursorOpen function.    A result table
must be associated with the cursor.    A result table is created
when a query containing an SQL SELECT statement is passed
to SqlExecute.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

lpRecordBuffer LPSTR Points to a buffer provided by the caller to receive the
formatted record.    This buffer must be at least as large as the
nRecordSize field of SQLTABLE structure indicates.

Return Value The return value is 1 if no errors occurred and the table had at least one record,
otherwise it is 0.

Comments The usual procedure for using the SqlFetchFirst function is as follows:
1) Set Data Format in the wFlags field of the lpSqlControl parameter to the option

you intend to use.    If you have selected the mSqlFlagFormatPadded option, set
the nPadding field of the lpSqlControl parameter to the number of spaces you
want between fields.

2) Call SqlExecute.
3) Call SqlDescribeTable to determine the characteristics of the result table.    Of

particular interest are the nRecordSize and lNumberOfRecords fields of the
resultant SQLTABLE structure.

4) If SqlTable.lNumberOfRecords indicates that one or more result table records
are available, allocate a buffer sufficiently large (at least as large as
SqlTable.nRecordSize) to receive the record's data.    Set the lpRecordBuffer
parameter to point to this buffer and set the nRecordBufferSize field of the
lpSqlControl parameter to the size of the buffer.

5) Call SqlFetchFirst.
Once these steps are completed, you can make unlimited calls to any of the Orion SQL
API fetch functions without repeating steps (1) through (4).    The same lpRecordBuffer
can be reused for all fetches.    Note, however, should you change the Data Format
setting in the wFlags field of the lpSqlControl parameter, you must call SqlDescribeTable
to calculate the new nRecordSize setting, reallocate the lpRecordBuffer and adjust the
nRecordBufferSize field of the lpSqlControl parameter accordingly.

Function: SqlFetchLast
Syntax BOOL FAR PASCAL SqlFetchLast(hUser    ,    hCursor    ,    lpSqlControl    ,   

lpRecordBuffer)
This function reads the last record in the result table associated with the hCursor
parameter.    The data in this record is formatted and loaded into the buffer provided by
the caller and pointed to by the lpRecordBuffer parameter.    To fetch this record you must
have already logged in (SqlLogin), created a cursor (SqlCursorOpen) and executed a
query (SqlExecute) which contained an SQL SELECT statement.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor which owns the result table in

which the record exists.    The hCursor parameter must have
been created with the SqlCursorOpen function.    A result table
must be associated with the cursor.    A result table is created
when a query containing an SQL SELECT statement is passed
to SqlExecute.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

lpRecordBuffer LPSTR Points to a buffer provided by the caller to receive the
formatted record.    This buffer must be at least as large as the
nRecordSize field of SQLTABLE structure indicates.

Return Value The return value is 1 if no errors occurred and the table had at least one record,
otherwise it is 0.

Comments The usual procedure for using the SqlFetchLast function is as follows:
1) Set Data Format in the wFlags field of the lpSqlControl parameter to the option

you intend to use.    If you have selected the mSqlFlagFormatPadded option, set
the nPadding field of the lpSqlControl parameter to the number of spaces you
want between fields.

2) Call SqlExecute.
3) Call SqlDescribeTable to determine the characteristics of the result table.    Of

particular interest are the nRecordSize and lNumberOfRecords fields of the
resultant SQLTABLE structure.

4) If SqlTable.lNumberOfRecords indicates that one or more result table records
are available, allocate a buffer sufficiently large (at least as large as
SqlTable.nRecordSize) to receive the record's data.    Set the lpRecordBuffer
parameter to point to this buffer and set the nRecordBufferSize field of the
lpSqlControl parameter to the size of the buffer.

5) Call SqlFetchLast.
Once these steps are completed, you can make unlimited calls to any of the Orion SQL
API fetch functions without repeating steps (1) through (4).    The same lpRecordBuffer
can be reused for all fetches.    Note, however, should you change the Data Format
setting in the wFlags field of the lpSqlControl parameter, you must call SqlDescribeTable
to calculate the new nRecordSize setting, reallocate the lpRecordBuffer and adjust the
nRecordBufferSize field of the lpSqlControl parameter accordingly.

Function: SqlFetchNext
Syntax BOOL FAR PASCAL SqlFetchNext(hUser    ,    hCursor    ,    lpSqlControl    ,   

lpRecordBuffer)
This function reads the next record in the result table associated with the hCursor
parameter.    The data in this record is formatted and loaded into the buffer provided by
the caller and pointed to by the lpRecordBuffer parameter.    To fetch this record you must
have already preformed at least one SqlFetchFirst or SqlFetchLast or SqlFetchPositioned
function.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor which owns the result table in

which the record exists.    The hCursor parameter must have
been created with the SqlCursorOpen function.    A result table
must be associated with the cursor.    A result table is created
when a query containing an SQL SELECT statement is passed
to SqlExecute.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

lpRecordBuffer LPSTR Points to a buffer provided by the caller to receive the
formatted record.    This buffer must be at least as large as the
nRecordSize field of SQLTABLE structure indicates.

Return Value The return value is 1 if no errors occurred and the cursor was not already positioned at
the last record, otherwise it is 0.

Comments The same lpRecordBuffer can be reused for all fetches.    Note, however, should you
change the Data Format setting in the wFlags field of the lpSqlControl parameter, you
must call SqlDescribeTable to calculate the new nRecordSize setting, reallocate the
lpRecordBuffer and adjust the nRecordBufferSize field of the lpSqlControl parameter
accordingly.

Function: SqlFetchPositioned
Syntax BOOL FAR PASCAL SqlFetchPositioned(hUser    ,    hCursor    ,    lpSqlControl    ,   

lRecordPosition    ,    lpRecordBuffer)
This function reads a record in the result table associated with the hCursor parameter.   
The lRecordPosition parameter indicates which record is to be read.    When
lRecordPosition is '1', the first physical record is read; when lRecordPosition is '2', the
second physical record is read and so on and so forth.    The data in this record is
formatted and loaded into the buffer provided by the caller and pointed to by the
lpRecordBuffer parameter.    To fetch this record you must have already logged in
(SqlLogin), created a cursor (SqlCursorOpen) and executed a query (SqlExecute) which
contained an SQL SELECT statement.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor which owns the result table in

which the record exists.    The hCursor parameter must have
been created with the SqlCursorOpen function.    A result table
must be associated with the cursor.    A result table is created
when a query containing an SQL SELECT statement is passed
to SqlExecute.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

lRecordPosition unsigned long Indicates which record is to be read.
lpRecordBuffer LPSTR Points to a buffer provided by the caller to receive the

formatted record.    This buffer must be at least as large as the
nRecordSize field of SQLTABLE structure indicates.

Return Value The return value is 1 if no errors occurred and lRecordPosition is greater than zero and
less then or equal to the number of records in the table, otherwise it is 0.

Comments Physical position is the raw position of the record in the file.    Physical order is not the
same as the order you specify with the SQL ORDER BY clause.
The usual procedure for using the SqlFetchPositioned function is as follows:
1) Set Data Format in the wFlags field of the lpSqlControl parameter to the option

you intend to use.    If you have selected the mSqlFlagFormatPadded option, set
the nPadding field of the lpSqlControl parameter to the number of spaces you
want between fields.

2) Call SqlExecute.
3) Call SqlDescribeTable to determine the characteristics of the result table.    Of

particular interest are the nRecordSize and lNumberOfRecords fields of the
resultant SQLTABLE structure.

4) If SqlTable.lNumberOfRecords indicates that one or more result table records
are available, allocate a buffer sufficiently large (at least as large as
SqlTable.nRecordSize) to receive the record's data.    Set the lpRecordBuffer
parameter to point to this buffer and set the nRecordBufferSize field of the
lpSqlControl parameter to the size of the buffer.

5) Call SqlFetchPositioned.
Once these steps are completed, you can make unlimited calls to any of the Orion SQL
API fetch functions without repeating steps (1) through (4).    The same lpRecordBuffer
can be reused for all fetches.    Note, however, should you change the Data Format
setting in the wFlags field of the lpSqlControl parameter, you must call SqlDescribeTable

to calculate the new nRecordSize setting, reallocate the lpRecordBuffer and adjust the
nRecordBufferSize field of the lpSqlControl parameter accordingly.

Function: SqlFetchPrevious
Syntax BOOL FAR PASCAL SqlFetchPrevious(hUser    ,    hCursor    ,    lpSqlControl    ,   

lpRecordBuffer)
This function reads the previous record in the result table associated with the hCursor
parameter.    The data in this record is formatted and loaded into the buffer provided by
the caller and pointed to by the lpRecordBuffer parameter.    To fetch this record you must
have already preformed at least one SqlFetchFirst or SqlFetchLast or SqlFetchPositioned
function.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor which owns the result table in

which the record exists.    The hCursor parameter must have
been created with the SqlCursorOpen function.    A result table
must be associated with the cursor.    A result table is created
when a query containing an SQL SELECT statement is passed
to SqlExecute.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

lpRecordBuffer LPSTR Points to a buffer provided by the caller to receive the
formatted record.    This buffer must be at least as large as the
nRecordSize field of SQLTABLE structure indicates.

Return Value The return value is 1 if no errors occurred and the cursor was not already positioned at
the first record, otherwise it is 0.

Comments The same lpRecordBuffer can be reused for all fetches.    Note, however, should you
change the Data Format setting in the wFlags field of the lpSqlControl parameter, you
must call SqlDescribeTable to calculate the new nRecordSize setting, reallocate the
lpRecordBuffer and adjust the nRecordBufferSize field of the lpSqlControl parameter
accordingly.

Function: SqlGetStatus
Syntax BOOL FAR PASCAL SqlGetStatus(hUser    ,    hCursor    ,    lpSqlControl    ,    lpSqlStatus

)
This function returns status information about the most recent call to SqlExecute which
used the cursor indicated by the hCursor parameter.    Status information includes the
number of database records deleted, inserted, selected or updated and the amount of
time elapsed during query execution.
If the hUser and hCursor parameters are set to 0, SqlGetStatus simply tests for the
presence of an active running Orion Database Administrator.    A value of 1 is returned if
and only if the database administrator is running.

Parameter Type/Description
hUser HANDLE Identifies the user who owns the cursor.    The hUser

parameter must have been created with the SqlLogin function.
hCursor HANDLE Identifies the cursor for which the status is to be

obtained.    The hCursor parameter must have been created with
the SqlCursorOpen function.

lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any
errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

lpSqlStatus LPSQLSTATUS Points to the target SQL Status Structure.
Return Value The return value is 1 if no errors occurred, otherwise it is 0.
Comments Each cursor's status information is reset every time SqlExecute is called.

Function: SqlLogin
Syntax HANDLE FAR PASCAL SqlLogin(lpSqlControl    ,    lpstrUserName    ,   

lpstrUserPassword)
In order to access the SQL Database Administrator you must first identify yourself as an
user with sufficient privilege to access the database.    This is accomplished by calling the
SqlLogin function with your user name and password.    Once logged in, you can
reference all your tables without specifying an user name.
To reference another user's table you must prefix the table name with the other user's
user name.    For example for user "JohnDoe" to select all columns of the system tables
he must use:

SELECT * FROM SYSTEM.TABLES;
For user "SYSTEM" to select the "PartNumber" column of user "JohnDoe"'s table
"Inventory" use the form:

SELECT JohnDoe.Inventory.PartNumber FROM JohnDoe.Inventory;
Or, more simply:

SELECT PartNumber FROM JohnDoe.Inventory;

Parameter Type/Description
lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any

errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

lpstrUserName LPSTR Points to a null terminated string containing the user
name.

lpstrUserPassword LPSTR Points to a null terminated string containing the user
password.

Return Value The return value is an user handle if no errors occurred while logging in, otherwise it is 0. 
You must use this user handle in all calls to the Orion SQL API.

Comments Only those users recognized by the Orion Database Administrator will be allowed to log
in.    When first installed, the Orion Database Administrator only recognizes the user
"SYSTEM" whose password is "ORION".    You can create additional users by logging in
as "SYSTEM" with password "ORION" and inserting records into the SYSTEM.USERS
table.    This table has three columns: USER_NAME, USER_PASSWORD and REMARK. 
To add user "JohnDoe" with password "IWantToRegisterNow" execute:

INSERT INTO USERS VALUES ('JohnDoe', 'IWantToRegisterNow', NULL);
John Doe can now login.

Function: SqlLogout
Syntax BOOL FAR PASCAL SqlLogout(hUser    ,    lpSqlControl)

This function logs the user off the system.    If the Automatic Commit option flag is set in
the wFlags field of the lpSqlControl parameter, any transaction still in progress is
automatically committed; otherwise, all work performed by the user since logging in or
since the last COMMIT WORK query (whichever occurred last) is rolled back.

Parameter Type/Description
hUser HANDLE Identifies the user who wishes to log off.    The hUser

parameter must have been created with the SqlLogin function.
lpSqlControl LPSQLCONTROL Points to an SQL Control Structure.    Any

errors that may occur cause the szErrorDetail,
szErrorMessage and nResultCode fields of this structure to be
loaded with descriptive information.

Return Value The return value is 1 if no errors occurred, otherwise it is 0.
Comments While SqlLogout automatically closes all the user's cursor before logging the user off, we

recommend explicitly closing cursor when they are no longer needed.

Constants: Data Class
The following constants identify the general characteristics of a column in the result table.    The
nDataClass field of the SQLCOLUMN data structure is set to one of these values as a result of an
SqlDescribeColumn function call.

mSqlDataClassAPPROXIMATE Indicates that the column is one of the approximate numeric data
types

mSqlDataClassBINARY Indicates that the column is of the binary data type
mSqlDataClassCHAR Indicates that the column is one of the character string data

types
mSqlDataClassEXACT Indicates that the column is one of the exact numeric data types
mSqlDataClassINVALID Indicates that the data type of the column is invalid

Constants: Data Type
The following constants identify the particular characteristics of a column in the result table.    The
nDataType field of the SQLCOLUMN data structure is set to one of these values as a result of an
SqlDescribeColumn function call.

mSqlDataTypeBINARY Indicates that the data type of the column is BINARY: its length is
given by the nPrecision field of the SQLCOLUMN data structure

mSqlDataTypeCHAR Indicates that the data type of the column is CHAR: its length is
given by the nPrecision field of the SQLCOLUMN data structure

mSqlDataTypeDECIMAL Indicates that the data type of the column is DECIMAL: its
precision and scale are given by the nPrecision and nScale
fields of the SQLCOLUMN data structure

mSqlDataTypeDOUBLE Indicates that the data type of the column is DOUBLE
PRECISION: its precision is given by the nPrecision field of the
SQLCOLUMN data structure

mSqlDataTypeFLOAT Indicates that the data type of the column is FLOAT: its precision
is given by the nPrecision field of the SQLCOLUMN data
structure

mSqlDataTypeINTEGER Indicates that the data type of the column is INTEGER: its
precision is given by the nPrecision field of the SQLCOLUMN
data structure

mSqlDataTypeNUMERIC Indicates that the data type of the column is NUMERIC: its
precision and scale are given by the nPrecision and nScale
fields of the SQLCOLUMN data structure

mSqlDataTypeREAL Indicates that the data type of the column is REAL: its precision
is given by the nPrecision field of the SQLCOLUMN data
structure

mSqlDataTypeSMALLINT Indicates that the data type of the column is SMALLINT: its
precision is given by the nPrecision field of the SQLCOLUMN
data structure

mSqlDataTypeVARCHAR Indicates that the data type of the column is VARCHAR: its
maximum length is given by the nPrecision field of the
SQLCOLUMN data structure

mSqlDataTypeINVALID Indicates that the data type of the column is invalid

Constants: Data Format
When a record is fetched from the result table by means of one of the SqlFetch functions, the Orion SQL
API loads the record into a buffer provided by the user.    The record is returned in one of three optional
formats.    The user selects the format he wants by setting the wFlags field of the SQLCONTROL
structure to one (and only one) of the following values:

mSqlFlagFormatPadded The record is returned as a single null terminated character
string.    The data for each column is contained within this string
separated by spaces.    The number of spaces is set by the user
in the nPadding field of the SQLCONTROL structure.    The
length of the string is constant across all records and is available
to the user in the nRecordSize field of the SQLTABLE data
structure.    The length of each column's portion of the string is
available to the user in the nFieldWidth field of the
SQLCOLUMN data structure.

mSqlFlagFormatString The record is returned as a set of null terminated character
strings, one for each column.    The first column's string is loaded
into the first bytes of the record buffer.    The second column's
string immediately follows the first and so on.    Each string
contains only the minimum number of characters to represent
the data.    That is, the strings are not padded.

mSqlFlagFormatStructure The record is returned as a packed 'C' data structure.    This
format is not recommended for 'Visual Basic' users.    Fields
appear in the 'C' data structure in the same order in which they
appear in the result table.    Character types are converted to null
terminated character strings padded with spaces to bring them to
the length of nFieldWidth as found in the SQLCOLUMN data
structure.    Approximate and exact numeric types are converted
to their 'double' representation.    A record containing three fields:
CHAR (10), INTEGER, DECIMAL(7,2) would appear as:

struct {
char szField1[11];
double dField2;
double dField3;

}

Constants: Automatic Commit
When a query is executed via an SqlExecute call, it is not committed and will be rolled back if the user
should happen to log off.

mSqlFlagAutoCommitOnLogout Setting this bit of the wFlags field of the SQLCONTROL
structure tells the Orion SQL API to issue a commit command to
the database administrator prior to logging the user off.    This
flag may be set in combination (using the '|' operator) with any
one of Data Format flags.

Constants: Name Length
While character string fields may be quite lengthy: names of users, tables and columns are limited.

mSqlMaximumNameLength This is the maximum length (not including the null terminator) of
names of users, tables and columns.

Data Structures: SQLCOLUMN
Result Table Column Description Record

The SQLCOLUMN data structure describes the characteristics of a specified column of
the result table.    The SQLCOLUMN data structure is loaded as a result of an
SqlDescribeColumn function call.
typedef struct tagSQLCOLUMN {

BOOL bRightJustified;
char szColumnName[mSqlMaximumNameLength+1];
unsigned nColumnSequenceNumber;
unsigned nDataClass;
unsigned nDataType;
unsigned nFieldWidth;
unsigned nPrecision;
unsigned nScale;

} SQLCOLUMN;
typedef SQLCOLUMN *PSQLCOLUMN;
typedef SQLCOLUMN far *LPSQLCOLUMN;
The SQLCOLUMN data structure has the following fields:

Field Description
bRightJustified Indicates whether the column, by default, is left or right justified.   

Right justification is indicated by a non-zero value
szColumnName Gives the column heading as a null terminated text string.
nColumnSequenceNumber Column numbers range from 1 to the number of columns

in the result table.
nDataClass Identifies the general characteristics of a column in the result

table.    Its value will be set to one of the    Data Class constants.
nDataType Identifies the particular characteristics of a column in the result

table.    Its value will be set to one of the    Data Type constants.
nFieldWidth The number of character positions guaranteed to hold the value

of this column when the record is fetched.    If Data Format in the
wFlags field of the lpSqlControl is mSqlFlagFormatPadded:
nFieldWidth is set to the size of the column.    If Data Format is
mSqlFlagFormatString: nFieldWidth is set to the size of the
column plus one for the terminating null.    If Data Format is
mSqlFlagFormatStructure and the column is numeric:
nFieldWidth is set to sizeof(double), if the column is a character
string type: nFieldWidth is set to the size of the column plus one
for the terminating null.

nPrecision If a numeric column, nPrecision is set to the precision (as
defined by ANSI SQL) of the result.    If a character field,
nPrecision is set to the length (as defined by ANSI SQL) of the
result.

nScale If a numeric column, nScale is set to the scale (as defined by
ANSI SQL) of the result.    If a character field, nScale is 0.

Data Structures: SQLCONTROL
Orion SQL API Interface Control Structure

The SQLCONTROL data structure contains the specifications necessary to provide an
interface between the applications programmer and the Orion SQL API.
typedef struct tagSQLCONTROL {

char szErrorDetail[65];
char szErrorMessage[257];
unsigned nHiLiteLength;
unsigned nHiLiteOffset;
unsigned nPadding;
unsigned nRecordBufferSize;
unsigned nResultCode;
unsigned long lRecordPosition;
unsigned long lReserved0
unsigned long lReserved1
unsigned long lReserved2
unsigned long lReserved3
unsigned long lReserved4
WORD wFlags;

} SQLCONTROL;
typedef SQLCONTROL *PSQLCONTROL;
typedef SQLCONTROL far *LPSQLCONTROL;

Field Description
szErrorDetail Each time an Orion SQL API function is called, any errors that

may occur cause this field to be loaded with a descriptive string:
"Error detected at line n of module.c".    This information is useful
if you need to call customer service.

szErrorMessage Each time an Orion SQL API function is called, any errors that
may occur cause this field to be loaded with a descriptive string:
"ERROR xxx: text."    This provides a useful diagnostic while you
are debugging your application.    "xxx" is the ASCII
representation (base 10) of the nResultCode.

nHiLiteLength Each time the SqlExecute is called, any syntax errors within the
query cause this field to be set to the length of the offending
phrase within the query text.

nHiLiteOffset Each time the SqlExecute is called, any syntax errors within the
query cause this field to be set to the offset of the offending
phrase within the query text.

nPadding The caller of the Orion SQL API sets this field to the number of
padding spaces to be inserted between columns when the
wFlags field of the SQLCONTROL structure is set to
mSqlFlagFormatPadded.

nRecordBufferSize The caller of the Orion SQL API sets this field to the size (in
bytes) of the record buffer.    This buffer must be at least as large
as the value in the nRecordSize field of the SQLTABLE data
structure.    The SQLTABLE data structure is available by calling
SqlDescribeTable.

nResultCode Indicates the basic status condition after any call to an Orion
SQL API function.    A value of 0 indicates no error.    Other values
are listed under Result Codes

lRecordPosition Indicates the position within the result table of the most recent

record fetched.    lRecordPosition can range from 1 to the
number of records in the result table.    If lRecordPosition is 0
then no records have been fetched.

lReserved0 Do not tamper with this field.
lReserved1 Do not tamper with this field.
lReserved2 Do not tamper with this field.
lReserved3 Do not tamper with this field.
lReserved4 Do not tamper with this field.
wFlags The caller of the Orion SQL API sets this field to the desired Data

Format to be utilized during record fetch functions.    The data
format may be optionally combined using the '|' operator with the
Automatic Commit flag.

Data Structures: SQLSTATUS
Query Status Structure

The SQLSTATUS data structure describes the overall outcome of the most recent
SqlExecute operation for a given cursor.
typedef struct tagSQLSTATUS {

unsigned long lNumberOfRecordDeletes;
unsigned long lNumberOfRecordInserts;
unsigned long lNumberOfRecordSelects;
unsigned long lNumberOfRecordUpdates;
unsigned long lTimeElapsed;

} SQLSTATUS;
typedef SQLSTATUS *PSQLSTATUS;
typedef SQLSTATUS far *LPSQLSTATUS;

Field Description
lNumberOfRecordDeletes Indicates the total number of records deleted by the

most recent SqlExecute.
lNumberOfRecordInserts Indicates the total number of records inserted by the

most recent SqlExecute.
lNumberOfRecordSelects Indicates the total number of records selected by the

most recent SqlExecute.
lNumberOfRecordUpdates Indicates the total number of records updated by the

most recent SqlExecute.
lTimeElapsed Indicates the elapsed time (in milliseconds) during the most

recent SqlExecute.

Data Structures: SQLTABLE
Result Table Description Record

The SQLTABLE data structure describes the characteristics of the result table.    The
SQLTABLE data structure is loaded as a result of an    SqlDescribeTable function call.
typedef struct tagSQLTABLE {

unsigned nNumberOfColumns;
unsigned nRecordSize;
unsigned long lNumberOfRecords;

} SQLTABLE;
typedef SQLTABLE *PSQLTABLE;
typedef SQLTABLE far *LPSQLTABLE;

Field Description
nNumberOfColumns Indicates the number of columns in the result table.
nRecordSize Indicates the minimum size (in bytes) of a buffer large enough to

hold a record fetched from the result table.
lNumberOfRecords Indicates the number of records in the result table.

Result Codes Part I (Ambiguous Column - Data File Corrupted)
mSqlErrorAmbiguousColumn When a column name can be found in more than one of several

tables given in the "FROM" clause of a query, the database
administrator cannot determine which of them you mean.    To
remove the ambiguity, use the "Tablename.ColumnName" or the
"UserName.Tablename.ColumnName" syntax.

mSqlErrorBadEnvironment The DatabasePath entry in the "win.ini" file is not properly
specified: it must begin with a drive identifier followed by a ':' and
a '\'.    A typical entry is "c:\database".

mSqlErrorBinaryNotAllowed When creating a table, the data type BINARY was specified, the
BINARY data type is not allowed in this release.

mSqlErrorCannotActivateFile An attempt has been made to access a file which is
unrecognized by the b-tree file manager.    This is an internal
error which should never occur.    Please contact customer
service.

mSqlErrorCannotCloseFile When the b-tree file manager attempted to close either a data file
or an index file, _lclose() returned an error.    This usually
indicates a problem with the DOS directory structure, we
recommend you run 'chkdsk'.

mSqlErrorCannotCloseLog When the database manager attempted to close either the
'or_log.dat' or the 'or_log.idx' transaction journal file, _lclose()
returned an error.    This usually indicates a problem with the
DOS directory structure, we recommend you run 'chkdsk'.

mSqlErrorCannotCreateDataFile When the b-tree file manager attempted to create a data file,
_lcreat() returned an error.    This usually indicates your setting
for 'FILES' in the 'config.sys' file should be increased.

mSqlErrorCannotCreateDumpFile When the dump manager attempted to create a dump file,
_lcreat() returned an error.    This usually indicates your setting
for 'FILES' in the 'config.sys' file should be increased.

mSqlErrorCannotCreateFile This result code will not occur.
mSqlErrorCannotCreateKeyFile When the b-tree file manager attempted to create a key file,

_lcreat() returned an error.    This usually indicates your setting
for 'FILES' in the 'config.sys' file should be increased.

mSqlErrorCannotCreateLog When the database manager attempted to create either the
'or_log.dat' or the 'or_log.idx' transaction journal file, _lcreat()
returned an error.    This usually indicates your setting for 'FILES'
in the 'config.sys' file should be increased.

mSqlErrorCannotDeleteFile When the b-tree file manager attempted to remove either a data
file or a key file, remove() returned an error.    This usually
indicates someone has modified the file's attribute settings.   
Please be sure none of the database files are marked as 'read
only', 'hidden' or 'system'.

mSqlErrorCannotDropTable When the database manager attempted to drop a table, its 'use
count' was greater than zero!    This is an internal error which
should never occur.    Please contact customer service.

mSqlErrorCannotOpenDataFile When the b-tree file manager attempted to open a data file,
_lopen() returned an error.    This usually indicates someone has
modified the file's attribute settings or deleted the file.    Please
be sure none of the database files are marked as 'read only',
'hidden' or 'system'.    Also, delete files only via SQL.

mSqlErrorCannotOpenFile This result code will not occur.

mSqlErrorCannotOpenKeyFile When the b-tree file manager attempted to open a key file,
_lopen() returned an error.    This usually indicates someone has
modified the file's attribute settings or deleted the file.    Please
be sure none of the database files are marked as 'read only',
'hidden' or 'system'.    Also, delete files only via SQL.

mSqlErrorCannotOpenLog When the database manager attempted to open either the
'or_log.dat' or the 'or_log.idx' transaction journal file, _lopen()
returned an error.    This usually indicates your setting for 'FILES'
in the 'config.sys' file should be increased.

mSqlErrorCannotRemoveTable When the database manager attempted to delete a file during a
'Toolbox Remove' database operation,    remove() returned an
error.    This usually indicates someone has modified the file's
attribute settings.    Please be sure none of the database files are
marked as 'read only', 'hidden' or 'system'.

mSqlErrorCharNotAllowed When the bind manager attempted to initialize an AVG() or
SUM() set function, it discovered that the argument was a CHAR
or VARCHAR column!

mSqlErrorCheckpointDetected This result code will not occur.
mSqlErrorDataFileCorrupted The b-tree file manager encountered illegal settings in the

header portions of a data file.    It is likely that your DOS files are
corrupted.

Result Codes Part II (Database Corrupt - Invalid Cursor)
mSqlErrorDatabaseCorrupt The database manager encountered illegal settings in the

header portions of the transaction journal file.    It is likely that
your DOS files are corrupted.

mSqlErrorDbaNotAvailable The Orion SQL API could not establish communication with the
Orion Database Administrator.    Is the database administrator
running?

mSqlErrorDivideByZero During query execution a divide by zero error occurred.
mSqlErrorDuplicateColumn During query execution a column is called out more than once in

a list where it can appear only once.    This error can only occur
in the CREATE TABLE statement and the INSERT statement.

mSqlErrorDuplicateRecord The b-tree file manager detected an attempt to violate an
UNIQUE constraint.

mSqlErrorExistingDataFile When the b-tree file manager attempted to create a data file, it
discovered the file already existed!    Delete files only via SQL.

mSqlErrorExistingKeyFile When the b-tree file manager attempted to create a key file, it
discovered the file already existed!    Delete files only via SQL.

mSqlErrorFileReadFailed When the b-tree file manager attempted to read a file, _lread()
returned an error.

mSqlErrorFileSeekFailed When the b-tree file manager attempted to seek a position in a
file, _llseek() returned an error.

mSqlErrorFileWriteFailed When the b-tree file manager attempted to write a file, _lwrite()
returned an error.

mSqlErrorGlobalLockFailed When the query manager attempted to lock a global resource,
GlobalLock() or LockResource() returned an error condition.

mSqlErrorGlobalUnlockFailed When the query manager attempted to unlock a global resource,
GlobalUnlock() or UnlockResource() returned an error condition.

mSqlErrorImportParseError This result code will not occur.
mSqlErrorIncompatibleTypes An attempt was made within the query to perform an operation

between two arguments whose types conflict.    An example is
adding a text string to a number.

mSqlErrorIndexExists An attempt was made within the query to create an index whose
name is already used.

mSqlErrorIndexUndoFailed When the b-tree file manager attempted to create an unique key
value a duplicate was found.    The attempt to undo the creation
failed.    This is an internal error which should never occur.   
Please contact customer service.

mSqlErrorInitializationFailed When the b-tree file manager attempted to initialize its tables, a
failure was detected.    This is an internal error which should
never occur.    Please contact customer service.

mSqlErrorInsufficientBuffer The record to be returned to the Orion SQL API user will not fit in
the buffer allocated by the user.    That is, the value of the
nRecordSize field of the SQLTABLE structure is larger than that
supplied by the user as indicated by the nRecordBufferSize
field of the SQLCONTROL structure.    Please be sure to allocate
buffers large enough to accommodate nRecordSize bytes.

mSqlErrorInternalError This is an internal error which should never occur.    Please
contact customer service.

mSqlErrorInvalidColumnSpec The arguments of an SQL LIKE predicate must be of a character
string type.

mSqlErrorInvalidColumnType This is an internal error which should never occur.    Please
contact customer service.

mSqlErrorInvalidCursor A call was made to the Orion SQL API where the pCursor field
of the SQLCONTROL structure is set to a value which does not
match any existing cursor.

Result Codes Part III (Invalid Data - NULL Not Allowed)
mSqlErrorInvalidData During the execution of a CREATE TABLE query, the scale of a

numeric column exceeds its precision.
mSqlErrorInvalidEscapeChar The data type of the escape character in a LIKE predicate is not

a character string type.
mSqlErrorInvalidPattern The pattern of an SQL LIKE predicate must not be NULL.
mSqlErrorInvalidUser The SqlLogin function was called with an lpstrUserName or

lpstrUserPassword argument whose length exceeded
mSqlMaximumNameLength.

mSqlErrorKeyFileCorrupted The b-tree file manager encountered illegal settings in the
header portions of a key file.    It is likely that your DOS files are
corrupted.

mSqlErrorListSizesUnequal The number of columns in the column list of an SQL INSERT
query does not match the number of values in the value list or
the number of fields selected in the subquery.

mSqlErrorMultipleSelects Only one SELECT statement may occur within a query.
mSqlErrorNoColumnExists The bind manager encountered a column specification which it

could not match to a table defined within the current scope.
mSqlErrorNoIndexExists A DROP INDEX was attempted when no index exists.
mSqlErrorNoOldRecord When the b-tree file manager attempted to carry out an

SqlFetchNext or SqlFetchPrevious function, it discovered there
was no current record.    You must first execute an SqlFetchFirst,
SqlFetchLast or SqlFetchPositioned.

mSqlErrorNoTableExists During execution of a query a table name was encountered
which cannot be found in the database under the currently
logged-on user name or under the explicitly declared user name.

mSqlErrorNoUserExists During execution of a query an user name was encountered
which cannot be found in the database.

mSqlErrorNodeSizeTooSmall This is an internal error which should never occur.    Please
contact customer service.

mSqlErrorNotAggregate While the select list of a SELECT statement started with
aggregate types (i.e. SUM()), a select list element was later
encountered which was a simple type (i.e. a column
specification).    Aggregate types and simple types cannot be
mixed unless the simple type is a grouping column.

mSqlErrorNotGroupingColumn A regular column specification was encountered where a
grouping column was required.

mSqlErrorNotInGroupedTable While the select list of a SELECT statement started with simple
types (i.e. a column specification), a select list element was later
encountered which was an aggregate type (i.e. SUM()).    Simple
types and aggregate types cannot be mixed unless the simple
type is a grouping column.

mSqlErrorNotSingleRecord A subquery returned more than one record.    When a subquery
is used as an argument to a comparison predicate it must return
a single record.

mSqlErrorNullInNotNullCol An attempt was made to insert a NULL value in a column which
was declared as NOT NULL.

mSqlErrorNullNotAllowed An attempt was made to use a NULL value where NULL values
are not permitted.

Result Codes Part IV (Parser Syntax Error - Wrong Version)
mSqlErrorParserSyntaxError There is a syntax error in the SQL statement.
mSqlErrorParserStackOverflow This is an internal error which should never occur.    Please

contact customer service.
mSqlErrorPrecisionConflict A mathematical operation was requested which would result in

loss of precision.
mSqlErrorResultTableExists An attempt was made to commit a transaction (COMMIT WORK)

while a result table was still open.    Users must close all cursors
which have an associated result table before committing work.

mSqlErrorScaleOverflow The scale of the result of a mathematical operation overflowed.
mSqlErrorSecurityViolation SqlLogin was called with an invalid lpstrUserName or

lpstrUserPassword.
mSqlErrorSetFunctionsNested Set functions may not be nested.
mSqlErrorStarNotAllowed The SELECT * syntax is illegal when used with the GROUP BY

clause.
mSqlErrorSubqueryNotOneColumn When a subquery is used as an argument to a predicate it must

return a single field in the select list.
mSqlErrorTableConflict The target table of an INSERT, DELETE or UPDATE query may

not also appear in a 'from' clause of a subquery.
mSqlErrorTableExists An attempt was made in a CREATE TABLE query to create a

table which already exists.
mSqlErrorTooManyColumnNames The list of column names in an INSERT statement exceeds the

number of columns in the table.
mSqlErrorTooManyTablesOpen An attempt was made to open more tables than the maximum

number of tables which may be open at one time.
mSqlErrorTrialSizeExceeded The number of events recorded in the log has exceeded the trial

size allotment.    Further operation will irrecoverably corrupt your
data.

mSqlErrorUserNotLoggedIn A call was made to the Orion SQL API where hUser does not
match an existing user.

mSqlErrorVariableHeaderMark The b-tree file manager encountered illegal settings in the
header portions of a data file.    It is likely that your DOS files are
corrupted.

mSqlErrorVariableHeaderSize The b-tree file manager attempted to place a record in a position
which was not large enough.    This is an internal error which
should never occur.    Please contact customer service.

mSqlErrorVariableHeaderWrong The b-tree file manager encountered illegal settings in the
header portions of a data file.    It is likely that your DOS files are
corrupted.

mSqlErrorVariableHeaderZero The b-tree file manager encountered illegal settings in the
header portions of a data file.    It is likely that your DOS files are
corrupted.

mSqlErrorWrongVersion The b-tree file manager has determined that your data and key
files are stamped with a version which is incompatible with the
current release.

b-tree file manager
The Orion Database Administrator is made of several large function units.    One of these is the b-tree file
manager.    It is responsible for carrying out low level data access and operates directly on the raw DOS
files located in the database directory.

bind manager
The Orion Database Administrator is made of several large function units.    One of these is the bind
manager.    It is responsible for associating the logical constructs in the query with actual users, tables and
columns in the database.

cursor
The Orion SQL API keeps track of the result of a query by means of a cursor.    The    cursor may include
status information, the table where the result of a SELECT may be found, the column descriptions for
such a table, the current record position for fetch operations, etc.

database manager
The Orion Database Administrator is made of several large function units.    One of these is the database
manager.    It is responsible for carrying out high level data access and operates on logical tables and
columns.    The database manager uses the b-tree file manager to access records in the raw DOS files
located in the database directory.    The database manager is also responsible for policing transactions
and the transaction journal (or 'log').

dump manager
The Orion Database Administrator is made of several large function units.    One of these is the dump
manager.    It is responsible for creating the dump file.

physical position
Physical position is the raw position of the record in the file.    Physical order is not the same as the order
you specify with the SQL ORDER BY clause.

query
By query we mean any SQL statement.

query manager
The Orion Database Administrator is made of several large function units.    One of these is the query
manager.    It is responsible for parsing the query into its component parts.

record buffer
One of the arguments to the Orion SQL API fetch functions is a pointer to a record buffer.    This is the
buffer which receives the formatted contents of a record.

result table
All SELECT queries generate a table containing the chosen records.    This is called the result table.    Its
contents are made available to you one at a time through one of the Orion SQL API fetch functions.

scroll bar
A bar that appears at the right and/or bottom edge of a window whose contents aren't completely visible.   
Each scroll bar contains two scroll arrows and a scroll box, which allow you to scroll within the window or
list box.

transaction journal
A transaction journal is a pair of files ('or_log.dat' and 'or_log.idx') written by the database manager.    The
transaction journal contains a record for every event which caused a change to the database.

